Train a PyTorch Model on Fashion MNIST: Jupyter Notebook
This document describes how to run a job on your cluster that distributes the training workload across multiple workers using Ray's distributed computing capabilities. This allows for parallelizing the training process and potentially reducing the overall training time. In the instructions below, we run Train a PyTorch Model on Fashion MNIST job using Jupyter Notebook.
For more information about Jupyter Notebook, see their documentation.
Follow the steps below to use Jupyter Notebook to run this job:
-
After your cluster deployment is complete, go to View Cluster.
-
On the cluster detail page, copy the IDE Password and click Jupyter Notebook.
-
Enter your IDE Password you copied in the Jupyter password field.
-
Click New to create a new Python Notebook.
-
In the New dropdown, select Python 3. It launches a new tab.
-
Enter the code sample below into a cell and click Run.
import os from typing import Dict import torch from filelock import FileLock from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms from torchvision.transforms import Normalize, ToTensor from tqdm import tqdm import ray.train from ray.train import ScalingConfig from ray.train.torch import TorchTrainer def get_dataloaders(batch_size): transform = transforms.Compose([ToTensor(), Normalize((0.5,), (0.5,))]) with FileLock(os.path.expanduser("~/data.lock")): training_data = datasets.FashionMNIST( root="~/data", train=True, download=True, transform=transform, ) test_data = datasets.FashionMNIST( root="~/data", train=False, download=True, transform=transform, ) train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=batch_size) return train_dataloader, test_dataloader class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28 * 28, 512), nn.ReLU(), nn.Dropout(0.25), nn.Linear(512, 512), nn.ReLU(), nn.Dropout(0.25), nn.Linear(512, 10), nn.ReLU(), ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits def train_func_per_worker(config: Dict): lr = config["lr"] epochs = config["epochs"] batch_size = config["batch_size_per_worker"] train_dataloader, test_dataloader = get_dataloaders(batch_size=batch_size) train_dataloader = ray.train.torch.prepare_data_loader(train_dataloader) test_dataloader = ray.train.torch.prepare_data_loader(test_dataloader) model = NeuralNetwork() model = ray.train.torch.prepare_model(model) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9) # Model training loop for epoch in range(epochs): if ray.train.get_context().get_world_size() > 1: train_dataloader.sampler.set_epoch(epoch) model.train() for X, y in tqdm(train_dataloader, desc=f"Train Epoch {epoch}"): pred = model(X) loss = loss_fn(pred, y) optimizer.zero_grad() loss.backward() optimizer.step() model.eval() test_loss, num_correct, num_total = 0, 0, 0 with torch.no_grad(): for X, y in tqdm(test_dataloader, desc=f"Test Epoch {epoch}"): pred = model(X) loss = loss_fn(pred, y) test_loss += loss.item() num_total += y.shape[0] num_correct += (pred.argmax(1) == y).sum().item() test_loss /= len(test_dataloader) accuracy = num_correct / num_total ray.train.report(metrics={"loss": test_loss, "accuracy": accuracy}) def train_fashion_mnist(num_workers=2, use_gpu=False): global_batch_size = 32 train_config = { "lr": 1e-3, "epochs": 10, "batch_size_per_worker": global_batch_size // num_workers, } # Configure computation resources scaling_config = ScalingConfig(num_workers=num_workers, use_gpu=use_gpu) # Initialize a Ray TorchTrainer trainer = TorchTrainer( train_loop_per_worker=train_func_per_worker, train_loop_config=train_config, scaling_config=scaling_config, ) result = trainer.fit() print(f"Training result: {result}")
-
If you receive the error below:
2024-05-16 15:42:45,780 INFO util.py:154 -- Outdated packages: ipywidgets==7.8.1 found, needs ipywidgets>=8 Run `pip install -U ipywidgets`, then restart the notebook server for rich notebook output. 2024-05-16 15:42:46,495 INFO util.py:154 -- Outdated packages: ipywidgets==7.8.1 found, needs ipywidgets>=8 Run `pip install -U ipywidgets`, then restart the notebook server for rich notebook output. 2024-05-16 15:42:46,528 INFO util.py:154 -- Outdated packages: ipywidgets==7.8.1 found, needs ipywidgets>=8 Run `pip install -U ipywidgets`, then restart the notebook server for rich notebook output.
then run:
pip install -U ipywidgets
-
In the toolbar, click Kernel and select Restart the kernel from the dropdown. This updates the packages.
-
Enter the python code below in a new cell. Click Run.
train_fashion_mnist(num_workers=2, use_gpu=True)
-
Below is the output of your job.
-
If you scroll to the bottom of the output, you will see the training result.
Training result: Result( metrics={'loss': 0.3572742183404133, 'accuracy': 0.8728}, path='/home/ray/ray_results/TorchTrainer_2024-05-17_18-55-55/TorchTrainer_c3725_00000_0_2024-05-17_18-55-55', filesystem='local', checkpoint=None )
-
Return to your cluster. On the cluster detail page, copy the IDE Password and click Ray Dashboard.
-
In the password field, enter your password. Click View All Jobs. Here, you can see that your job is running.
-
You can also check this in io.net by going to Clusters > select your cluster > click an IO Worker > Jobs.
Updated 8 months ago